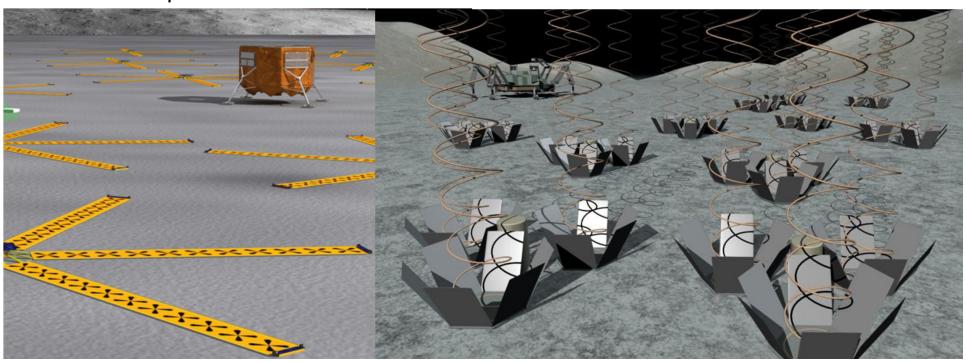


Background (1 of 2)

Motivation


- Lunar Radio Array for low frequency, high redshift Dark Ages/Epoch of Reionization observations (z = 6-50, f = 30-200 MHz)
- High precision cosmological measurements of 21 cm H I line fluctuations
- Probe universe before first star formation and provide information about the Intergalactic Medium and evolution of large scale structures
- Does the current cosmological model accurately describe the Universe before reionization?

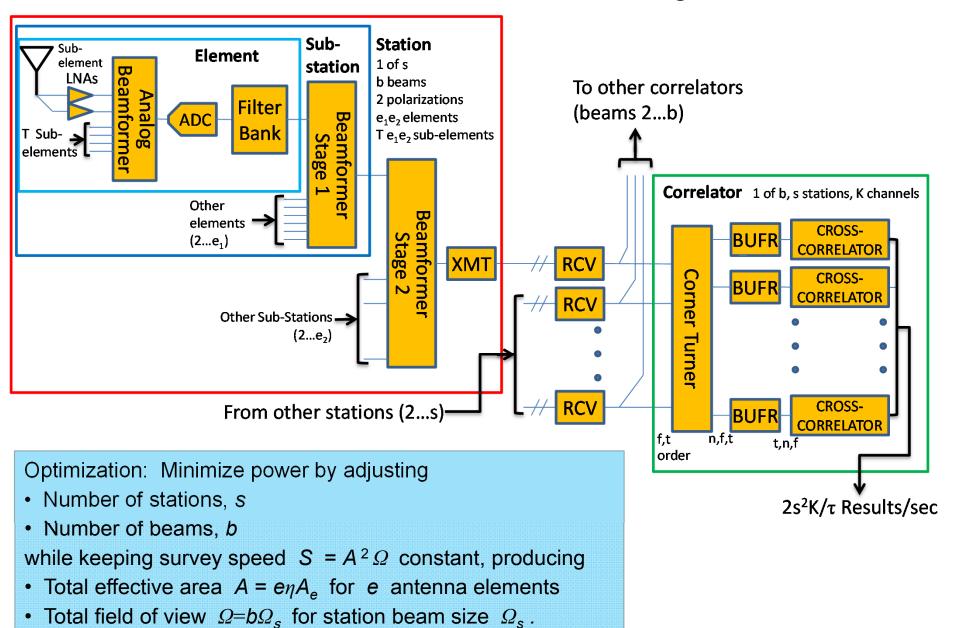
Lunar Radio Array

- Radio interferometer based on the far side of the moon
 - Necessary for precision measurements
 - Shielding from earth-based and solar RFI
 - No permanent ionosphere
- Minimum collecting area of ~1 km² and brightness sensitivity 10 mK
- Several technologies must be developed before deployment

Background (2 of 2)

- Two different concepts have been proposed
- Dark Ages Radio Interferometer (DALI)
 - 300 stations each consisting of 1500 printed dipole elements
 - Multiple beams are formed at each station
 - All pairs of stations are cross-correlated, separately for each beam
- Lunar Array for Radio Cosmology (LARC)
 - 10,000-20,000 elements each consisting of four helical antennas
 - All pairs of elements are cross-correlated

Summary of Results


Approach

- Consider all signal processing elements from antennas through correlator
- Model the power dissipation of each element using available data
- Optimize the design so as to minimize the total power dissipation, keeping survey speed constant, subject to some constraints

Findings

- FFT telescope, MOFF correlator, Omniscope: rejected as impractical.
- Power tradeoff favors clustering antennas into relatively few stations, each with many elementary antennas formed into multiple beams.
- Beamforming is best done with two hierarchical stages
- Cross-correlation is best done with a separate multiply-accumulator for each baseline so as to avoid power-hungry memory operations. This leads to a matrix (not pipeline) architecture.
- In the optimized design, power use is dominated by LNAs and signal transmission. Cross correlation uses only about 10%.
- In current technology, $A_{\rm eff}$ = 0.5 km² with FoV = 1000 deg² at zenith can be achieved using <20kW for all processing from antennas through correlator.

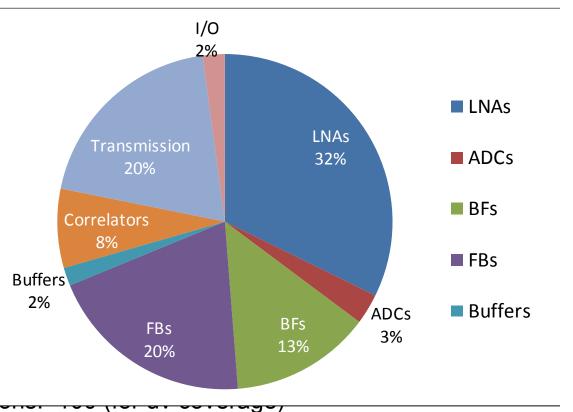
Selected Architecture – Block Diagram

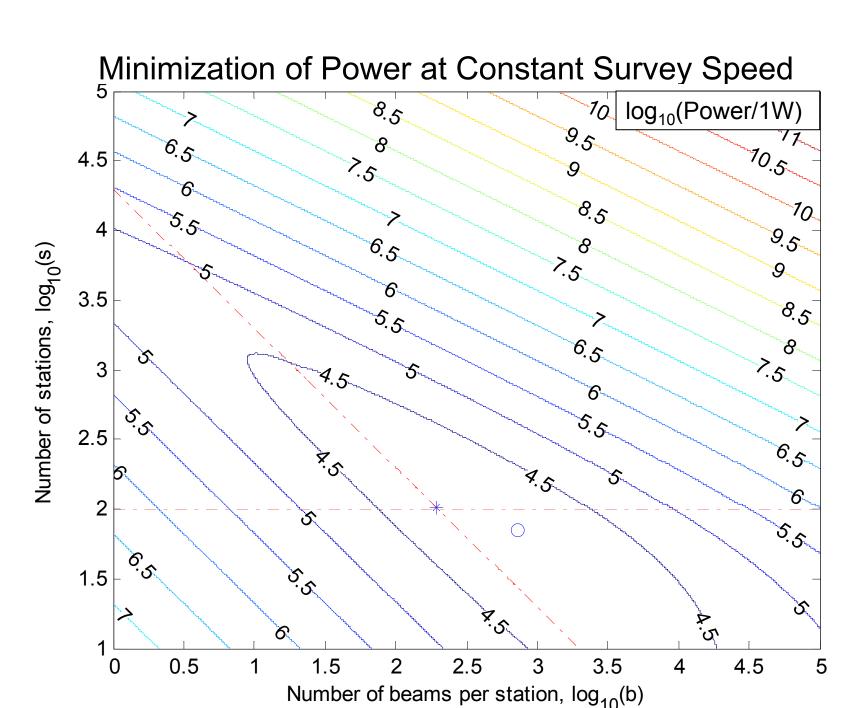
Parameters

Fixed

- 90 MHz center frequence
- Quad-helix antenna elen
 - Effective area 39 m² at
- 170 MHz processed ban
- 16384 frequency channel
- Survey speed $A^2\Omega$ = 1.
- Sample quantization 2b+

Constraints


- Minimum number of statl
- All station beams must fit inside element beam


Results

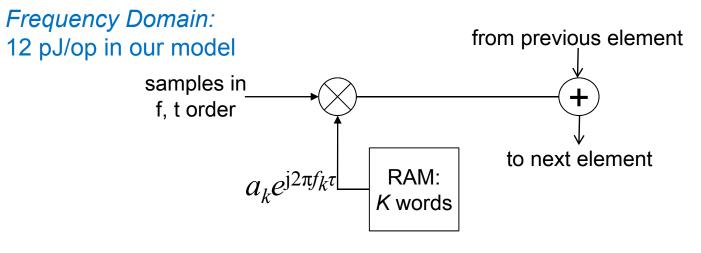
- 104 stations with 240 elements each
- 192 beams formed at each station, filling the element beam
- Total signal processing power 18.6 kW

Not included

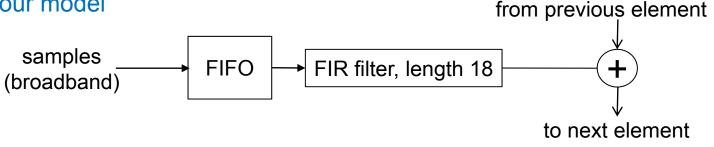
- Support circuits like voltage converters
- Monitor and control

Power Consumption Models

$$P = 2e(Tc_{e1} + Bc_{e2})$$


$$+B[2c_{bf}b\sqrt{es} + c_{f}e\log_{2}K + 2c_{m}bs + c_{c}bs(2s+1) + 2c_{t}bs + c_{i}p]$$

All values scaled to 90 nm CMOS technology, 2b+2b sample size.


Sym	Parameter	Value	Units	Basis	
c_{e1}	power per LNA (indep of bandwidth)	0.03	W	optimistic guess	
C _{e2}	energy per sample digitized (ADC)	1.33E-10	J	published 5 GSa/s 6b ADC, scaled [1]	
c_f	energy per Filter Bank operation (FFT radix 2 butterfly)	6.26E-11	J	published spectrometer ASIC [2]	
C _C	energy per CMAC operation	2.00E-12	J	ALMA, EVLA, GeoStar chips scaled	
C bf	energy per frequency-domain beamformer operation	1.20E-11	J	analogy to CMAC; coefficients in RAM	
c _{bt}	energy per time-domain beamformer operation	8.00E-11	J	analogy to CMAC, length 18 FIR interpolator	
Ci	energy per I/O (one sample, chip to chip)	1.23E-11	J	published high-speed transceiver ASIC [3]	
c_t	energy per transmission (one sample, station to center)	5.40E-10	J	COTS optical link [4]	
C _m	energy per Read+Write to RAM (one sample)	4.80E-11	J	COTS DRAM [5]	

- [1] M. Choi et al., "A 6-bit 5-GSample/s Nyquist A/D converter in 65nm CMOS," 2008 IEEE Symp. on VLSI Circuits.
- [2] B. Richards et al., , "A 1.5GS/s 4096-Point Digital Spectrum Analyzer for Space-Borne Applications." IEEE Custom Integrated Circuits Conference, September, 2009.
- [3] P. Palmer et al., "A 14mW 6.25Gb/s Transceiver in 90nm CMOS for Serial Chip-to-Chip Communications." IEEE Solid State Circuits Conference, 2007.
- [4] Advanced Optronice Devices, model AODM-XT154-LD-CD-MF data sheet.
- [5] Hynix PN H5TC1G83TFR-H9A, 128Mx8 SDRAM, data sheet.

Beamformers - Time Domain vs. Frequency Domain

Both cases:

To form b beams from e antenna signals requires

- be of these beamforming elements if done in 1 stage
- 2b sqrt(e) of these beamforming elements if done in 2 stages

"What If?" Questions

- Minimum number of stations is constrained to be larger?
 - perhaps necessary for adequate uv-plane coverage
- Processed bandwidth is reduced?
 - practical antenna elements are efficient over < 1 octave
- Required survey speed is reduced? or increased?
- Dipoles are used as antenna elements rather than quad helixes?
- Original LARC concept is used?
 - all elements separately correlated, not aggregated into stations
- Original DALI concept is used?
 - 300 stations with 1500 dipoles each.

"What If?" Answers

	S	В	S _{min}	stations	beams	elements	power
	m^4	MHz					W
Original DALI concept [1]	1.74E+11	170	100	300	52	450,000	82,216
Original LARC concept [2]	1.75E+11	170	100	20,000	1	20,000	300,030
Dipoles, optimized	1.74E+11	170	100	159	401	110,097	60,614
Quad helixes, optimized	1.74E+11	170	100	104	192	24,964	18,567
reduced bandwidth	1.74E+11	50	100	104	192	24,964	9,690
reduced survey speed	4.35E+10	170	100	100	99	12,490	8,907
increased min. stations	1.74E+11	170	300	300	66	24,964	20,356

^[1] Number of beams was not specified; chosen here to produce specified survey speed.

^[2] Survey speed produced by given number of single-beam elements.

Discussion

- Why are our power estimates so low?
 - We assume ASICs for FBs, BFs, and correlators not GPUs nor FPGAs
 - We assume current technology (90 nm CMOS)
 - not 250 nm (ALMA) nor 130 nm (EVLA)
 - but we're not pushing technology (45 nm is available now, but expensive) and we're not invoking Moore's Law.
 - We use a power-efficient correlation architecture
 - Each baseline gets a dedicated CMAC, minimizing buffering and interconnections.
 - Results in more chips at slower clock speed (22 MHz), but far less power.
- Why do compound antennas (quad helixes) result in less power than dipoles?
 - The compound antennas accomplish part of the beamforming for "free" with passive components that use no power
 - Quad helix beam is 0.28 sterradians, vs. about 4 sterradians for a dipole
 - Although they use less processing power, the compound antennas are more complex and have more mass per unit collecting area.

Conclusions and Disclaimers

- The power needed to process signals from a large array of nonsteerable elements is not prohibitive, even for the Moon, and even in current technology.
- The power required will be less in future technologies.
 - Smaller gate length CMOS is clearly foreseeable.
 - Substantially different semiconductor materials and transistor types may produce additional power reduction.
- The tall pole in power consumption seems to be LNAs, not digital electronics.
- Similar results apply to arrays on Earth with similar parameters.
 - SKA-low, HERA
 - But additional design constraints may be needed to ensure that ionospheric effects can be corrected.
- Our analysis neglects support circuitry (power supplies and M/C)
 - We guess that about 30% more power will be needed for these
- Our analysis is based on scaling existing designs, modeling, and data sheets
 - No detailed design has been done, so accuracy of our results is uncertain.

Acknowledgments

- This work was funded by JPL/Caltech via the Strategic University Research Partnerships program. JPL is operated by Caltech for NASA.
- Valuable advice was received from Prof. Jackie Hewitt of MIT and Dr. Charles Lawrence of JPL.
- Ray Escoffier of NRAO and Brent Carlson of DRAO provided unpublished data on the ALMA and EVLA correlator designs.
- The advantages of two-stage beamforming were pointed out to us by Wallace Turner of the SKA Project Development Office.